Пептидная связь — характеристика, свойства и строение

1. Первичная структура белка. Зависимость свойств и конформации белков от первичной структуры. Примеры полиморфизма белков, гемоглобин А и F, структурные и функциональные отличия. Роль фетального гемоглобина в период внутриутробного развития плода. Наследственные изменения первичной структуры — молекулярные болезни (серповидно-клеточная анемия).

ОБНОВЛЕНИЯ

08 июня 2019, 16:18:59

Токсикозы при кишечных инфекциях

08 июня 2019, 16:10:24

Токсикозы при кишечных инфекциях

07 июня 2019, 22:59:05

Острый обструктивный ларингит (круп) у детей

09 мая 2019, 16:13:23

Заболеваемость

27 апреля 2019, 16:00:00

Амбулаторно-поликлиническое обслуживание населения

24 апреля 2019, 01:02:18

Недостаточность питания у детей раннего возраста

17 апреля 2019, 22:26:23

Желчно-каменная болезнь: лечение

17 апреля 2019, 22:21:37

Желчно-каменная болезнь: диагностика

17 апреля 2019, 22:07:42

Желчно-каменная болезнь: этиология и патогенез

17 апреля 2019, 22:06:28

Анатомия желчевыводящих путей

ПОДЕЛИТЬСЯ:

Ионизация аминокислот

В свободных аминокислотах при нейтральных значениях pH (около 7) карбоксильная группа депротонирована и имеет отрицательный заряд (-COO– , проявляет свойства кислот, т.е. отдаёт протон), а аминная группа — положительный (-NH3 + , проявляет свойства оснований, т.е. принимает протон) ( 2 ). Аминокислоты, не имеющие заряженных радикалов, находятся в нейтральном растворе в формецвиттерионов (т.е. не заряжены за счет того, что отрицательный заряд карбоксильной группы скомпенсирован положительным зарядом аминной группы).

Рис. 2. Ионизация амино-

кислоты при pH = 7.

Связь между ДНК, РНК и белком

Белок, ДНК и РНК – это единая система, которая определяет специфичность организма и передает наследственные признаки. Каждый белок имеет строго определенную последовательность аминокислот в пептидной цепи и конкретную пространственную структуру. Последовательность аминокислот в белковой цепи соответствует первичной структуре. Всего их 4 – первичная, вторичная, третичная и четвертичная.

В организме свободную аминокислоту активирует фермент. тРНК (транспортная) переносит ее от фермента к иРНК (информационная). иРНК и рРНК (рибосомальная) отвечают за синтез из аминокислот белка со строго заданной ДНК последовательностью. Для каждой аминокислоты в клетке предусмотрены собственные ферменты и тРНК.

ДНК выполняет функцию матрицы, на которой производятся цепи РНК. РНК выступает в качестве матрицы для синтеза белка. ДНК -> РНК -> белок – именно таким образом переносится генетическая информация от последовательности нуклеотидов в ДНК к последовательности аминокислот в белках.

Строение, классификация и физико-химические свойства протеиногенных аминокислот

Протеиногенными называются а, L-аминокислоты, включающиеся в состав белковых молекул в процессе биосинтеза. Протеиногенные аминокислоты называют исторически сложившимися тривиальными названиями (табл. 1).

Читайте также:  «берокка» или «супрадин» — различия средств и что лучше

Таблица 1

Протеиногенные а, L-аминокислоты млекопитающих

Название

Структурная формула*

Обозначение

русское

международное

Глицин

Гли

Gly, G

Аланин

Ала

Ala, А

Валин**

Вал

Val, V

Лейцин**

Лей

Leu, L

Изолейцин**

Иле

lie, I

Серин

Сер

Ser, S

Треонин**

Тре

Thr, T

Цистеин

Цис

Cys, C

Метионин**

Мет

Met, M

Лизин**

Лиз

Lys, К

Аргинин***

Apr

Arg, R

Аспарагиновая

кислота

Асп

Asp, D

Название

Структурная формула*

Обозначение

русское

международное

Аспарагин

Асн

Asn, N

Глутаминовая

кислота

Глу

Glu, Е

Глутамин

Глн

Gin, Q

Фенил-аланин**

Фен

Phe, F

Тирозин

Тир

Туг, Y

Триптофан**

Три

Trp, W

Гистидин***

Гис

His, H

Пролин

Про

Pro, P

  • * Боковые радикалы R выделены жирным шрифтом. ** Незаменимые аминокислоты.
  • *** Условно незаменимые аминокислоты.

Таким образом, известно 20 протеиногенных аминокислот, 19 из которых имеют общую формулу, включающую карбоксильную группу, аминогруппу, асимметрический атом углерода, водород и боковой радикал R. Двадцатая аминокислота (пролин), по существу, является иминокислотой и представляет собой пятичленный гетероцикл. Определяет аминокислоту строение бокового радикала R, поскольку остальная часть молекулы для всех протеиногенных аминокислот совершенно одинакова. На этом основана классификация аминокислот по строению бокового радикала R (табл. 2).

Классификация аминокислот по строению боковото радикала R

Полярность

аминокислот

Химический

состав

Перечень

аминокислот

Неполярные

гидрофобные

Моноамино-

монокарбоновые

Глицин, лейцин, изолейцин, валин, аланин, фенилаланин

Полярные незаряженные

Моноамино-

монокарбоновые

Серин, треонин, тирозин, метионин, цистеин, аспарагин, глутамин

Положительно

заряженные

(основные)

Диамино-

монокарбоновые

Лизин, аргинин, триптофан

Отрицательно

заряженные

(кислые)

Моноамино-

дикарбоновые

Аспарагиновая кислота, глутаминовая кислота

Аминокислоты являются амфотерными соединениями (амфолитами): в щелочных средах они образуют соли карбоновых кислот, в кислых — аммонийные соли:

На диссоциацию аминокислот оказывает влияние pH среды. В очень кислых растворах аминогруппа протонирована полностью, а карбоксильная группа практически не ионизирована. В сильнощелочных растворах — наоборот: при значениях pH от 4 до 9 каждая из диссоциирующих групп находится в равновесии со своей неионизирован- ной формой, а обе группы вместе находятся в равновесии с биполярным ионом (цвиттер-ионом). Если сумма зарядов на аминокислоте равна нулю, такое значение pH носит название изоэлектриче- ской точки и обозначается pi (рис. 4).

Рис. 4. Кислотно-основные свойства аминокислоты при различных

значениях pH

Еще одним проявлением амфотерности является способность аминокислот образовывать в щелочной среде с сульфатом меди ярко окрашенные растворимые комплексные соединения с ионом меди Си2+:

Эта реакция лежит в основе биуретового метода качественного и количественного определения белков.

При взаимодействии а-аминогруппы одной аминокислоты с а-карбоксильной группой другой аминокислоты образуются пептидные связи. Так формируется остов молекулы белка. Главная структурная единица белков и пептидов — пептидная связь (рис. 5).

Рис. 5. Схема образования пептидной связи

Пептидная связь имеет плоскостную структуру: атомы С, О и N находятся в ?/?2-гибридизации; у атома N имеется /?-орбиталь с неподеленной парой электронов; образуется /?-тг-сопряженная система, приводящая к укорочению связи C-N (0,132 нм). Это вызвано различной электроотрицательностью атомов С, N и О.

Читайте также:  57 способов сбросить вес навсегда: советуют ученые (часть 1)

Связанные пептидной связью аминокислоты образуют поли- пептидную цепь. Вокруг пептидной связи вращение невозможно, все четыре атома лежат в одной плоскости, т.е. компланарны. Вращение же других связей вокруг полипептидного остова достаточно свободно. Пептидная связь имеет преимущественно ш/?я«с-конфигурацию относительно плоскости пептидной связи. Строение пептидной связи проявляется в формировании вторичной и третичной структуры белка.

Пептидная связь устойчива при температурах ниже 40 °С в нейтральной среде, при более высоких температурах в кислой или щелочной среде пептидная связь может гидролизоваться.

Ещё документы из категории химия:

Современные приборы для термических методов анализа. Принципы, устройство, фирмы-производители, Нуклеиновые кислоты Индексы Ковача и нормальные температуры кипения алкилбифенилов Взаимодействие нового полиамфолита на основе этил 3-аминокротоната и акриловой кислоты с ионами Биокерамика на основе фосфатов кальция Влияние жёсткости воды на пенообразование и его устойчивость Фенолформальдегидные смолы 104244104154104078104072104065103936103800

X Код для использования на сайте: Ширина блока px

Скопируйте этот код и вставьте себе на сайт

X

Чтобы скачать документ, порекомендуйте, пожалуйста, его своим друзьям в любой соц. сети.

После чего кнопка «СКАЧАТЬ» станет доступной!

Кнопочки находятся чуть ниже. Спасибо!

Кнопки:

Скачать документ

Незаменимые и заменимые аминокислоты

Из большого разнообразия только 20 аминокислот обладают свойством образовывать белки. АМК делятся на α-, β-, γ-, δ- и ω-аминокислоты, обладающие разными формулами и химическими свойствами. Наиболее важны альфа аминокислоты, из которых строится большинство белков.

Существует классификация аминокислот, которая делит эту группу на гидрофильные (обладающие свойством взаимодействия с водой) и гидрофобные аминокислоты (пытаются избежать контакта с водой). Но есть и классификация, которая строится на поступлении их в организм: виды аминокислот делятся на заменимые и незаменимые.

Незаменимые

Незаменимые и заменимые аминокислоты

К незаменимым АМК относятся соединения, которые организм не способен синтезировать в необходимом количестве. Это следующий комплекс аминокислот:

  • лейцин;
  • валин;
  • лизин;
  • метионин

Стереоизомерия

Возможные конфигурации

Для планарного пептидной связи возможны две конфигурации: в транс -конфигурации α-атомы углерода и боковые цепи расположены по разные стороны пептидной связи, в то время как в цис -конфигурации — с одной и той же. Транс-форма пептидных н 'связей значительно более распространенной чем цис (встречается в 99,6% случаев), из-за того, что в последнем случае велика вероятность пространственного столкновения между боковыми группами аминокислот:

Исключением является аминокислота пролин, если она соединена через аминогруппу с какой-либо другой аминокислотой. Пролин — единственная из протеиногенным аминокислот, содержит около C α не первоначальная, а вторичную аминогруппу. В ней атом азота связан с двумя атомами углерода, а не с одним, как у остальных аминокислот. В пролина, что включенный в пептид, заместители при атоме азота отличаются не так сильно, как в других аминокислот. Поэтому разница между транс — и цис -конфигурации очень незначительна и ни одна из них не имеет энергетической преимущества.

Возможны конформации

Конформация пептида определяется тремя торсионными углами, отражающие вращения вокруг трех последовательных связей в пептидной остове: ψ (пси) — вокруг C α1-С, ω (омега) — вокруг С-N, и φ (фи) — вокруг N- С α2.

Как уже упоминалось вращения вокруг собственно пептидной связи не происходит, так ω угол всегда имеет значение ок. 180 ° в транс -конфигурации и 0 ° в значительно более редкой цис -конфигурации.

Поскольку связи N-С α2 и C α1-С по обе стороны от пептидной являются обычными одинарными связями, вращения вокруг них неограничен, в результате чего пептидные цепи могут принимать различные пространственные конформации. Однако возможны не все комбинации торсионных углов, при некоторых из них происходит пространственное столкновения атомов. Допустимые значения визуализируют на двухмерном графике, называется диаграммой Рамахандрана.

Заключение

Пептидная связь является основой построения белковых молекул, из которых, в конечном итоге, строятся все живые организмы. Особенности её строения и пространственной конфигурации оказали огромное влияние на саму возможность существования жизни на нашей планете.

Последовательность аминокислот в белке определяется другой важнейшей молекулой – ДНК.

ПредыдущаяХимияКовалентная полярная и неполярная связь — определение, характеристика и примеры

СледующаяХимияКоэффициенты в химических уравнениях — как правильно расставлять и уравнивать

Белки

Белки — это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (греч. «протос» — первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

Белки выполняют разнообразные биологичес­кие функции: каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемо­глобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.